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The ability to use mass spectrometry in the characterization of Table 1. Products Formed in Reactions of CIMn(H20)* with a
nonpolar hydrocarbons and their mixtures, such as synthetic Yarety of Compounds Typical of Those Present in Petroleum
saturated hydrocarbon polymers and the nonpolar components o
petroleum, is highly desirable because this method yields both T——
structural as well as molecular weight (MW) informatiodowever, Tetracosane (338) /@\/ Adduct-H,0, 428
saturated hydrocarbons are notoriously difficult to analyze by mass Cyclic alkane ©
spectrometry owing to a lack of ionizable functional groups. The | 5-a-Cholestane (372)
few methods that are known to afford ionization of these compounds Adduct-H,0, 462
tend to cause dissociation which results in the loss of MW
information! In the search for better ionization methods for

Hydrocarbon (MW) Chemical Structure | Products, m/z

Branched alkanes

hydrocarbons, the reactivity of bare and ligated gas-phase transition| sgyajane (422) « [ M Adduct-H,0, 512
metal ions (e.g., Fe Ni*, Ag", FeCH", and CpCad; Cp = #°- >
cyclopentadienyl) has attracted inter&s$tThe CpCd ion has been 2,2,4,4-Tetramethylpentane

reported to ionize most hydrocarbons without excessive fragmenta-| (128)* M Adduct-H,0, 218
tion. It reacts with many alkanes by & bond insertion, )

predominantly yielding adduct ions that have lost one or two 2,3-Dimethylpentane (100) )—< Adduct-H,0, 190
molecules of H.4¢6-8 These product ions provide MW information

although the extent of unsaturation may be difficult to determine | Alkenes?®

(e.g., cyclohexene loses lnd cyclohexane loses 2Hhus yielding 1-Octene (112) W Adduct-H,0, 202

sometimes accompanied by an additionaldss, has been observed
for higher MW alkanes (@H2.:2, N > 20)¢ Moreover, some
alkanes undergo-€C bond cleavages upon reactions with CpCo Aromatic

(e.g., loss of @H4, CsHg, C4Hs, or CHs*).428Hence, a less aggressive Coronene (300) @
reagent ion is desirable. We report here on the gas-phase reactionp
of such an ion, a ligated water cluster of MnCIMn(H,O)".

the same product ion). Also, loss of cyclopentadiene (CpH), Cyclohexene (82)
O Adduct-H,0, 172

Adduct-H,0, 390

The CIMn(HO)* ions were generated by electron ionization (30 | Benzene (78)° © Adduct-H,0, 168
eV electron energy, @A emission current, 80 ms ionization time)
of MnCI(CO}) (synthesizet from Mn,(CO),, by reaction with G Thiophene
in CCly) in the presence of ¥ vapor in one cell of a Finnigan Tetrahydrothiophene (88) O Adduct-H,0, 178
dual-cell Fourier transform ion cyclotron resonance mass spec- E——

. . 0,
trometer (FT-ICR). The ions were transferred into the other cell | retranydrofuran (72) Q Adduct-H,0, 162
and isolated before reactions with neutral compounds. Volatile
hydrocarbons were introduced via an adjustable leak valve. | Nitrogen containing
Nonvolatile hydrocarbons were dissolved in tetrahydrofuran, elec- | hiarocarbon !
y. ; ; ’ y . 2,9-Dimethyl-4,7-diphenyl- Adduct-H,0, 450

trospray-deposited on a titanium foil, and evaporated by using laser-| 1,70-phenanthroline (360) »

induced acoustic desorptiBn(LIAD) as described earligfef

The isolated CIMn(HO)* ions were allowed to react with a
variety of hydrocarbons typical of those that commonly exist in aIntroduction via LIAD. " Introduction via an adjustable leak valve.
petroleum. Remarkably, every compound studied yields only one _ ) _ )
product ion (Table 1). This is true even for those compounds that disruption of this stable half-filled sheft.Hence, HO in CIMn-

undergo skeletal fragmentation upon reactions with Cp(og., (H20)" is weakly bound and should be readily replaced by many
5-a-cholestane and tetrahydrofur@nyhe product ion is formed ~ Mmolecules. Indeed, this is the only reaction observed for the
by replacement of kO in CIMn(H,O)* by the hydrocarbon. hydrocarbons studied. Further reactions within the CiMn

The HO replacement reaction is fast. For example, the reaction hydrocarbon complex do not take place because the ground-state
efficiencied? for benzene and 2,2,4,4-tetramethylpentane are 70% CIMn™ is not particularly reactive toward hydrocarbons for the
and 31%, respectively. This can be rationalized on the basis of thereasons discussed above. The only reaction of ClMith small
electronic structure of CIMh13a The Mn*-Cl bond involves the hydrocarbons reported in the literature is a slow replacement of
one readily available electron @s$n Mn™ (ground electronic state  the Cl atom (i.e., most of the ClMwalkane complexes dissociate
3cP44h), leaving the rest of the valence electrons in‘Mn a high- to CIMn* and alkane, as expected¥.This reaction does not occur
spin & configuration'3® Additional bond formation requires the  for CIMn(H,O)" because kD loss lowers the energy of the system.

9266 = J. AM. CHEM. SOC. 2007, 129, 9266—9267 10.1021/ja073270r CCC: $37.00 © 2007 American Chemical Society



COMMUNICATIONS

Finally, a mixture of tetracosane (a linear alkaneg,-Bholestane
100 (a cyclic alkane), squalane (a branched alkane), coronene (a
polyaromatic hydrocarbon), and 2,9-dimethyl-4,7-diphenyl-1,10-
phenanthroline (a N-heteroaromatic compound) (all in equimolar
ratios) was evaporated by LIAD and allowed to react with CIMn-
(H,O)*. The resulting mass spectrum shows th®Heplacement
product for every component of the mixture (Figure 1, bottom).
While the relative product ion abundances do not exactly match
40 the relative molar concentration of each mixture component, they
are still remarkably close when considering the fact that the
compositions, structures, and volatilities of the compounds vary
widely. In sharp contrast, electrospray ionization (ESI; performed
on a Finnigan linear quadrupole ion trap (LTQ) mass spectrometer)
wo 200 a0 awo o sse 600 only reveals the presence of the most polar mixture component,

2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Figure 1, top).

In conclusion, CIMn(HO)™ efficiently ionizes various types of

Products _ miz hydrocarbons, both polar and nonpolar, as well as other compounds
100.0, CIManZO)w Pnﬂysmmatl:—Hzo 380 . . .

CIMN(H,0) + N-Heteroaromatic - H,0 480 typically present in petroleum, to exclusively form pseudomolecular
CIMn{H,0)* + Linear Alkane — H,0 428 ions (adduct-HO). Even highly branched hydrocarbons yield solely
80.0{ | CIMn{H,0)" + Cyclic Alkane — H,0 462 this product ion when exposed to CIMn{®)*. Collisional activa-
CIMn(H,0)" + Branched Alkane — H,0 512 tion of these product ions yields structural information on the
® hydrocarbons and may allow distinction and identification of

isomeric hydrocarbons.
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